首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1155篇
  免费   211篇
  2021年   10篇
  2019年   12篇
  2017年   9篇
  2016年   15篇
  2015年   23篇
  2014年   30篇
  2013年   34篇
  2012年   38篇
  2011年   53篇
  2010年   40篇
  2009年   26篇
  2008年   52篇
  2007年   48篇
  2006年   37篇
  2005年   46篇
  2004年   46篇
  2003年   40篇
  2002年   40篇
  2001年   43篇
  2000年   37篇
  1999年   42篇
  1998年   18篇
  1997年   12篇
  1996年   21篇
  1995年   16篇
  1994年   16篇
  1993年   13篇
  1992年   34篇
  1991年   20篇
  1990年   34篇
  1989年   33篇
  1988年   26篇
  1987年   31篇
  1986年   14篇
  1985年   20篇
  1984年   29篇
  1983年   17篇
  1982年   13篇
  1981年   13篇
  1980年   13篇
  1979年   12篇
  1978年   14篇
  1977年   15篇
  1976年   17篇
  1975年   17篇
  1974年   14篇
  1973年   14篇
  1972年   9篇
  1971年   8篇
  1942年   10篇
排序方式: 共有1366条查询结果,搜索用时 250 毫秒
991.
992.
Neurocomputational models of large-scale brain dynamics utilizing realistic connectivity matrices have advanced our understanding of the operational network principles in the brain. In particular, spontaneous or resting state activity has been studied on various scales of spatial and temporal organization including those that relate to physiological, encephalographic and hemodynamic data. In this article we focus on the brain from the perspective of a dynamic network and discuss the role of its network constituents in shaping brain dynamics. These constituents include the brain's structural connectivity, the population dynamics of its network nodes and the time delays involved in signal transmission. In addition, no discussion of brain dynamics would be complete without considering noise and stochastic effects. In fact, there is mounting evidence that the interaction between noise and dynamics plays an important functional role in shaping key brain processes. In particular, we discuss a unifying theoretical framework that explains how structured spatio-temporal resting state patterns emerge from noise driven explorations of unstable or stable oscillatory states. Embracing this perspective, we explore the consequences of network manipulations to understand some of the brain's dysfunctions, as well as network effects that offer new insights into routes towards therapy, recovery and brain repair. These collective insights will be at the core of a new computational environment, the Virtual Brain, which will allow flexible incorporation of empirical data constraining the brain models to integrate, unify and predict network responses to incipient pathological processes.  相似文献   
993.
Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP)-stimulated platelets or P-selectin-bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14 to 3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that although blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by approximately 60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 caused dissociation of previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a shear threshold for P-selectin PSGL-1 binding was also noted at shear rates <100/s when Ps-beads collided with isolated neutrophils. Results are discussed in light of biophysical computations that characterize the collision between unequal-size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion and weak shear threshold for P-selectin PSGL-1 interactions that may be physiologically relevant.  相似文献   
994.
Mutants with alteration to Asn(706) of the highly conserved (701)TGDGVND(707) motif in domain P of sarcoplasmic reticulum Ca(2+)-ATPase were analyzed for changes in transport cycle kinetics and binding of the inhibitors vanadate, BeF, AlF, and MgF. The fluorides likely mimic the phosphoryl group/P(i) in the respective ground, transition, and product states of phosphoenzyme hydrolysis (Danko, S., Yamasaki, K., Daiho, T., and Suzuki, H. (2004) J. Biol. Chem. 279, 14991-14998). Binding of BeF, AlF, and MgF was also studied for mutant Glu(183) --> Ala, where the glutamate of the (181)TGES(184) motif in domain A is replaced. Mutations of Asn(706) and Glu(183) have in common that they dramatically impede the function of the enzyme in E2 states, but have little effect in E1. Contrary to the Glu(183) mutant, in which E2P slowly accumulates (Clausen, J. D., Vilsen, B., McIntosh, D. B., Einholm, A. P., and Andersen, J. P. (2004) Proc. Natl. Acad. Sci. U. S. A. 101, 2776-2781), E2P formation was not detectable with the Asn(706) mutants. Differential sensitivities of the mutants to inhibition by AlF, MgF, and BeF made it possible to distinguish different roles of Asn(706) and Glu(183). Hence, Asn(706) is less important than Glu(183) for gaining the transition state during E2P hydrolysis but plays critical roles in stabilization of E2P ground and E2.P(i) product states and in the major conformational changes associated with the Ca(2)E1P --> E2P and E2 --> Ca(2)E1 transitions, which seem to be facilitated by interaction of Asn(706) with domain A.  相似文献   
995.
Schlag EM  McIntosh MS 《Phytochemistry》2006,67(14):1510-1519
The contents of five ginsenosides (Rg1, Re, Rb1, Rc and Rd) were measured in American ginseng roots collected from 10 populations grown in Maryland. Ginsenoside contents and compositions varied significantly among populations and protopanaxatriol (Rg1 and Re) ginsenosides were inversely correlated within root samples and among populations. The most abundant ginsenoside within a root and by population was either Rg1 or Re, followed by Rb1. Ginseng populations surveyed grouped into two chemotypes based on the relative compositions of Rg1 and Re. Four populations, including the control population in which plants were grown from TN and WI seed sources, contained roots with the recognized chemotype for American ginseng of low Rg1 composition relative to Re. The remaining 6 populations possessed roots with a distinctive chemotype of high relative Rg1 to Re compositions. Chemotype did not vary by production type (wild versus cultivated) and roots within a population rarely exhibited chemotypes different from the overall population chemotype. These results provide support for recent evidence that relative Rg1 to Re ginsenoside contents in American ginseng roots vary by region and that these differences are likely influenced more by genotype than environmental factors. Because the physiological and medicinal effects of different ginsenosides differ and can even be oppositional, our findings indicate the need for fingerprinting ginseng samples for regulation and recommended usage. Also, the High Rg1/Low Re chemotype discovered in MD could potentially be used therapeutically for coronary health based on recent evidence of the positive effects of Rg1 on vascular growth.  相似文献   
996.
Rotavirus nonstructural protein 4 (NSP4) is known to function as an intracellular receptor at the endoplasmic reticulum (ER) critical to viral morphogenesis and is the first characterized viral enterotoxin. Exogenously added NSP4 induces diarrhea in rodent pups and stimulates secretory chloride currents across intestinal segments as measured in Ussing chambers. Circular dichroism studies further reveal that intact NSP4 and the enterotoxic peptide (NSP4(114-135)) that is located within the extended, C-terminal amphipathic helix preferentially interact with caveola-like model membranes. We now show colocalization of NSP4 and caveolin-1 in NSP4-transfected and rotavirus-infected mammalian cells in reticular structures surrounding the nucleus (likely ER), in the cytosol, and at the cell periphery by laser scanning confocal microscopy. A direct interaction between NSP4 residues 112 to 140 and caveolin-1 was determined by the Pro-Quest yeast two-hybrid system with full-length NSP4 and seven overlapping deletion mutants as bait, caveolin-1 as prey, and vice versa. Coimmunoprecipitation of NSP4-caveolin-1 complexes from rotavirus-infected mammalian cells demonstrated that the interaction occurs during viral infection. Finally, binding of caveolin-1 from mammalian cell lysates to Sepharose-bound, NSP4-specific synthetic peptides confirmed the yeast two-hybrid data and further delineated the binding domain to amino acids 114 to 135. We propose that the association of NSP4 and caveolin-1 contributes to NSP4 intracellular trafficking from the ER to the cell surface and speculate that exogenously added NSP4 stimulates signaling molecules located in caveola microdomains.  相似文献   
997.
Gait dynamics on an inclined walkway   总被引:1,自引:0,他引:1  
OBJECTIVE: This paper documents research that quantifies and describes the biomechanics of normal gait on inclined surfaces. DESIGN: Experimental, investigative. BACKGROUND: It is necessary to walk on inclined surfaces to negotiate the natural and built environments. Little research has been conducted on the biomechanics of normal gait on inclined surfaces. METHODS: The gait of 11 healthy male volunteers was measured using a Vicon system 370 on an inclinable walkway. Gait was measured at 0 degrees , 5 degrees , 8 degrees and 10 degrees of incline. Passive optical markers were placed on each subject and they walked at a self-selected speed up and down the walkway. Ground reaction forces and EMG were measured. Gait data were analysed in Vicon Clinical Manager. RESULTS: Changes in the dynamics of the lower limbs with respect to incline angles are described. Between subject and between condition differences in biomechanical parameters were significant. Hip flexion increased at heel strike with inclines from -10 degrees to +10 degrees . Knee flexion and ankle dorsiflexion at heel strike increased with increasing angle walking up, but not down. Changes in joint moments and powers due to change in the angle of incline or direction of walking were observed. CONCLUSIONS: The mechanisms by which the body enables walking up and downhill, specifically raising and lowering the centre of mass, and preventing slipping, can be seen in the alteration in the dynamics of the lower limbs. Increases in range of motion and muscle strength requirements need to be considered in the design of lower limb prostheses and in orthopaedic and neurological rehabilitation. RELEVANCE: Gait, prosthetics, rehabilitation, balance and falls.  相似文献   
998.
The prevalence of vitamin D deficiency was reassessed in April and May 1971, 10 years after the discovery of widespread late rickets and osteomalacia in the Glasgow Pakistani community. Evidence of vitamin D deficiency was found in 28 out of 115 adults and children examined (24%). Children at the age of puberty were most severely affected by rickets, whereas most infants and younger children in the survey were protected by vitamin D supplements. Mild biochemical osteomalacia was common in Pakistani women.A total of 21 Pakistani and Indian children with rickets were admitted to Glasgow hospitals during 1968-70. These comprised 10 children with infantile rickets and 11 with late rickets. Four of the latter group required osteotomy for severe rachitic deformity.Late rickets and osteomalacia in Pakistani and Indian immigrants are not primarily due to nutritional deficiency of vitamin D, though the high phytate content of their diet may be of aetiological importance. A combination of environmental, social, and endogenous factors, the relative importance of which is not at present clear, may also be involved. Advice on the prophylaxis of vitamin D deficiency should be given to all Pakistani and Indian communities in the United Kingdom.  相似文献   
999.
Amiodarone, a potent antiarrhythmic drug, is widely used in cardiology. Its electrophysiological effects, as well as many of its side effects, seem to involve lipids. We report here a multinuclear NMR and X-ray diffraction study of amiodarone in egg phosphatidylcholine liposomes and lipid multilayers. In proton NMR experiments, amiodarone alters the signal from the lipid trimethyl ammonium group for pH values ranging from 3.2 to 8.4; cholesterol does not cause this alteration. The addition of SCN- changes both the proton and phosphorus NMR spectra of liposomes containing amiodarone. For both proton and carbon NMR, amiodarone modifies the signal from the lipid methylene groups, but to a far lesser extent than does cholesterol. Incorporation of amiodarone in EPC bilayers also modifies the low-angle X-ray diffraction patterns, decreasing the lamellar repeat period at low water contents, but swelling the fluid spaces between bilayers at high water contents. Electron density profiles and modeling studies using the X-ray data indicate that amiodarone decreases the bilayer thickness and adds electron density at the interfacial region of the bilayer. Our analysis of the NMR and X-ray data indicates that the iodine atoms of amiodarone are located near the hydrocarbon/water interface and that the tertiary amine of amiodarone is in the headgroup region of the bilayer.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号